On Local Super-Penalization of Interior Penalty Discontinuous Galerkin Methods

نویسندگان

  • Andrea Cangiani
  • John Chapman
  • Emmanuil H. Georgoulis
  • Max Jensen
چکیده

We prove in an abstract setting that standard (continuous) Galerkin finite element approximations are the limit of interior penalty discontinuous Galerkin approximations as the penalty parameter tends to infinity. We apply this result to equations of non-negative characteristic form and the non-linear, time dependent system of incompressible miscible displacement. Moreover, we investigate varying the penalty parameter on only a subset of a triangulation and the effects of local super-penalization on the stability of the method, resulting in a partly continuous, partly discontinuous method in the limit. An iterative automatic procedure is also proposed for the determination of the continuous region of the domain without loss of stability of the method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Discontinuous Galerkin Method for Diffusion Equations with Reduced Stabilization

We extend the results on minimal stabilization of Burman and Stamm (”Minimal stabilization of discontinuous Galerkin finite element methods for hyperbolic problems”, J. Sci. Comp., DOI: 10.1007/s10915-007-9149-5) to the case of the local discontinuous Galerkin methods on mixed form. The penalization term on the faces is relaxed to act only on a part of the polynomial spectrum. Stability in the ...

متن کامل

Minimal Stabilization for Discontinuous Galerkin Finite Element Methods for Hyperbolic Problems

We consider a discontinuous Galerkin finite element method for the advection–reaction equation in two space–dimensions. For polynomial approximation spaces of degree greater than or equal to two on triangles we propose a method where stability is obtained by a penalization of only the upper portion of the polynomial spectrum of the jump of the solution over element edges. We prove stability in ...

متن کامل

Interior penalty bilinear IFE discontinuous Galerkin methods for elliptic equations with discontinuous coefficient

This paper applies bilinear immersed finite elements (IFEs) in the interior penalty discontinuous Galerkin (DG) methods for solving a second order elliptic equation with discontinuous coefficient. A discontinuous bilinear IFE space is constructed and applied to both the symmetric and nonsymmetric interior penalty DG formulations. The new methods can solve an interface problem on a Cartesian mes...

متن کامل

Interior Penalty Continuous and Discontinuous Finite Element Approximations of Hyperbolic Equations

In this paper we present the continuous and discontinuous Galerkin methods in a unified setting for the numerical approximation of the transport dominated advection-reaction equation. Both methods are stabilized by the interior penalty method, more precisely by the jump of the gradient in the continuous case whereas in the discontinuous case the stabilization of the jump of the solution and opt...

متن کامل

Weighted Error Estimates of the Continuous Interior Penalty Method for Singularly Perturbed Problems

In this paper we analyze local properties of the Continuous Interior Penalty (CIP) Method for a model convection-dominated singularly perturbed convection-diffusion problem. We show weighted a priori error estimates, where the weight function exponentially decays outside the subdomain of interest. This result shows that locally, the CIP method is comparable to the Streamline Diffusion (SD) or t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1205.5672  شماره 

صفحات  -

تاریخ انتشار 2012